Multiclass classification¶
Hyperplane (limited 5000)¶
Summary¶
| Model | Accuracy | MicroF1 | MacroF1 | Memory in Mb | Time in s |
|---|---|---|---|---|---|
| Deep River LSTM | 0.8882 | 0.8882 | 0.888163 | 0.048192 | 1192.18 |
| Deep River Logistic | 0.9084 | 0.9084 | 0.908396 | 0.0271883 | 157.744 |
| Deep River MLP | 0.5004 | 0.5004 | 0.498917 | 0.049367 | 291.074 |
| Logistic regression | 0.9108 | 0.9108 | 0.9108 | 0.00967312 | 36.7864 |
| [baseline] Last Class | 0.503301 | 0.503301 | 0.503278 | 0.000510216 | 14.4975 |
| [baseline] Prior Class | 0.494699 | 0.494699 | 0.49095 | 0.000611305 | 14.912 |
Charts¶
LED (limited 5000)¶
Summary¶
| Model | Accuracy | MicroF1 | MacroF1 | Memory in Mb | Time in s |
|---|---|---|---|---|---|
| Deep River LSTM | 0.338 | 0.338 | 0.328551 | 0.03547 | 1147.47 |
| Deep River Logistic | 0.3606 | 0.3606 | 0.31801 | 0.0215616 | 148.098 |
| Deep River MLP | 0.1048 | 0.1048 | 0.0525165 | 0.0437403 | 279.831 |
| Deep River RNN | 0.3524 | 0.3524 | 0.313258 | 0.0357409 | 433.301 |
| Logistic regression | 0.0928 | 0.0928 | 0.016987 | 0.00505733 | 18.9079 |
| [baseline] Last Class | 0.0980196 | 0.0980196 | 0.0975498 | 0.00121212 | 7.60275 |
| [baseline] Prior Class | 0.105421 | 0.105421 | 0.0468459 | 0.00116062 | 8.76123 |
Charts¶
RandomRBF (limited 5000)¶
Summary¶
| Model | Accuracy | MicroF1 | MacroF1 | Memory in Mb | Time in s |
|---|---|---|---|---|---|
| Deep River LSTM | 0.5368 | 0.5368 | 0.489181 | 0.0331888 | 1075.22 |
| Deep River Logistic | 0.5066 | 0.5066 | 0.314396 | 0.0202723 | 146.062 |
| Deep River MLP | 0.3482 | 0.3482 | 0.112211 | 0.0424776 | 282.092 |
| Deep River RNN | 0.5136 | 0.5136 | 0.353501 | 0.0334597 | 423.671 |
| Logistic regression | 0.3628 | 0.3628 | 0.157195 | 0.00439358 | 17.8173 |
| [baseline] Last Class | 0.276855 | 0.276855 | 0.243844 | 0.000563622 | 7.77983 |
| [baseline] Prior Class | 0.34907 | 0.34907 | 0.13395 | 0.000718117 | 8.54999 |
Charts¶
Datasets¶
Hyperplane (limited 5000)
Hyperplane(limited n=5000)
LED (limited 5000)
LED(limited n=5000)
RandomRBF (limited 5000)
RandomRBF(limited n=5000)
Models¶
Logistic regression
Pipeline (
StandardScaler (
with_std=True
),
LogisticRegression (
optimizer=SGD (
lr=Constant (
learning_rate=0.005
)
)
loss=Log (
weight_pos=1.
weight_neg=1.
)
l2=0.
l1=0.
intercept_init=0.
intercept_lr=Constant (
learning_rate=0.01
)
clip_gradient=1e+12
initializer=Zeros ()
)
)
Deep River Logistic
Pipeline (
StandardScaler (
with_std=True
),
LogisticRegressionInitialized (
n_features=10
n_init_classes=2
loss_fn="cross_entropy"
optimizer_fn="sgd"
lr=0.005
output_is_logit=True
is_feature_incremental=True
is_class_incremental=True
device="cpu"
seed=42
gradient_clip_value=None
)
)
Deep River MLP
Pipeline (
StandardScaler (
with_std=True
),
MultiLayerPerceptronInitialized (
n_features=10
n_width=5
n_layers=5
n_init_classes=2
loss_fn="cross_entropy"
optimizer_fn="sgd"
lr=0.005
output_is_logit=True
is_feature_incremental=True
is_class_incremental=True
device="cpu"
seed=42
gradient_clip_value=None
)
)
Deep River LSTM
Pipeline (
StandardScaler (
with_std=True
),
LSTMClassifier (
n_features=10
hidden_size=32
n_init_classes=2
loss_fn="cross_entropy"
optimizer_fn="adam"
lr=0.001
output_is_logit=True
is_feature_incremental=True
is_class_incremental=True
device="cpu"
seed=42
gradient_clip_value=None
)
)
Deep River RNN
Pipeline (
StandardScaler (
with_std=True
),
RNNClassifier (
n_features=10
hidden_size=32
num_layers=1
nonlinearity="tanh"
n_init_classes=2
loss_fn="cross_entropy"
optimizer_fn="adam"
lr=0.001
output_is_logit=True
is_feature_incremental=True
is_class_incremental=True
device="cpu"
seed=42
gradient_clip_value=None
)
)
[baseline] Last Class
NoChangeClassifier ()
[baseline] Prior Class
PriorClassifier ()
Environment¶
Python implementation: CPython Python version : 3.12.12 IPython version : 9.6.0 river : 0.22.0 numpy : 1.26.4 scikit-learn: 1.5.2 pandas : 2.2.3 scipy : 1.16.2 Compiler : Clang 21.1.4 OS : Linux Release : 6.11.0-1018-azure Machine : x86_64 Processor : x86_64 CPU cores : 4 Architecture: 64bit