Skip to content

Multiclass classification

Hyperplane (limited 5000)

Summary

Model Accuracy MicroF1 MacroF1 Memory in Mb Time in s
Deep River LSTM 0.8882 0.8882 0.888163 0.048192 1192.18
Deep River Logistic 0.9084 0.9084 0.908396 0.0271883 157.744
Deep River MLP 0.5004 0.5004 0.498917 0.049367 291.074
Logistic regression 0.9108 0.9108 0.9108 0.00967312 36.7864
[baseline] Last Class 0.503301 0.503301 0.503278 0.000510216 14.4975
[baseline] Prior Class 0.494699 0.494699 0.49095 0.000611305 14.912

Charts

LED (limited 5000)

Summary

Model Accuracy MicroF1 MacroF1 Memory in Mb Time in s
Deep River LSTM 0.338 0.338 0.328551 0.03547 1147.47
Deep River Logistic 0.3606 0.3606 0.31801 0.0215616 148.098
Deep River MLP 0.1048 0.1048 0.0525165 0.0437403 279.831
Deep River RNN 0.3524 0.3524 0.313258 0.0357409 433.301
Logistic regression 0.0928 0.0928 0.016987 0.00505733 18.9079
[baseline] Last Class 0.0980196 0.0980196 0.0975498 0.00121212 7.60275
[baseline] Prior Class 0.105421 0.105421 0.0468459 0.00116062 8.76123

Charts

RandomRBF (limited 5000)

Summary

Model Accuracy MicroF1 MacroF1 Memory in Mb Time in s
Deep River LSTM 0.5368 0.5368 0.489181 0.0331888 1075.22
Deep River Logistic 0.5066 0.5066 0.314396 0.0202723 146.062
Deep River MLP 0.3482 0.3482 0.112211 0.0424776 282.092
Deep River RNN 0.5136 0.5136 0.353501 0.0334597 423.671
Logistic regression 0.3628 0.3628 0.157195 0.00439358 17.8173
[baseline] Last Class 0.276855 0.276855 0.243844 0.000563622 7.77983
[baseline] Prior Class 0.34907 0.34907 0.13395 0.000718117 8.54999

Charts

Datasets

Hyperplane (limited 5000)

Hyperplane(limited n=5000)

LED (limited 5000)

LED(limited n=5000)

RandomRBF (limited 5000)

RandomRBF(limited n=5000)

Models

Logistic regression

Pipeline (
  StandardScaler (
    with_std=True
  ),
  LogisticRegression (
    optimizer=SGD (
      lr=Constant (
        learning_rate=0.005
      )
    )
    loss=Log (
      weight_pos=1.
      weight_neg=1.
    )
    l2=0.
    l1=0.
    intercept_init=0.
    intercept_lr=Constant (
      learning_rate=0.01
    )
    clip_gradient=1e+12
    initializer=Zeros ()
  )
)

Deep River Logistic

Pipeline (
  StandardScaler (
    with_std=True
  ),
  LogisticRegressionInitialized (
    n_features=10
    n_init_classes=2
    loss_fn="cross_entropy"
    optimizer_fn="sgd"
    lr=0.005
    output_is_logit=True
    is_feature_incremental=True
    is_class_incremental=True
    device="cpu"
    seed=42
    gradient_clip_value=None
  )
)

Deep River MLP

Pipeline (
  StandardScaler (
    with_std=True
  ),
  MultiLayerPerceptronInitialized (
    n_features=10
    n_width=5
    n_layers=5
    n_init_classes=2
    loss_fn="cross_entropy"
    optimizer_fn="sgd"
    lr=0.005
    output_is_logit=True
    is_feature_incremental=True
    is_class_incremental=True
    device="cpu"
    seed=42
    gradient_clip_value=None
  )
)

Deep River LSTM

Pipeline (
  StandardScaler (
    with_std=True
  ),
  LSTMClassifier (
    n_features=10
    hidden_size=32
    n_init_classes=2
    loss_fn="cross_entropy"
    optimizer_fn="adam"
    lr=0.001
    output_is_logit=True
    is_feature_incremental=True
    is_class_incremental=True
    device="cpu"
    seed=42
    gradient_clip_value=None
  )
)

Deep River RNN

Pipeline (
  StandardScaler (
    with_std=True
  ),
  RNNClassifier (
    n_features=10
    hidden_size=32
    num_layers=1
    nonlinearity="tanh"
    n_init_classes=2
    loss_fn="cross_entropy"
    optimizer_fn="adam"
    lr=0.001
    output_is_logit=True
    is_feature_incremental=True
    is_class_incremental=True
    device="cpu"
    seed=42
    gradient_clip_value=None
  )
)

[baseline] Last Class

NoChangeClassifier ()

[baseline] Prior Class

PriorClassifier ()

Environment

Python implementation: CPython
Python version       : 3.12.12
IPython version      : 9.6.0

river       : 0.22.0
numpy       : 1.26.4
scikit-learn: 1.5.2
pandas      : 2.2.3
scipy       : 1.16.2

Compiler    : Clang 21.1.4 
OS          : Linux
Release     : 6.11.0-1018-azure
Machine     : x86_64
Processor   : x86_64
CPU cores   : 4
Architecture: 64bit