Skip to content

Regression

ChickWeights

Summary

Model MAE RMSE R2 Memory in Mb Time in s
Deep River Attention 79.3499 93.1322 -0.720105 0.0645237 134.626
Deep River LSTM 100.133 117.539 -1.7398 0.0351133 138.265
Deep River Linear 119.58 138.47 -2.80249 0.0177469 20.0831
Deep River MLP 24.8823 38.4367 0.707013 0.0374966 29.0197
Deep River RNN 100.316 117.739 -1.74914 0.0329514 54.5518
Linear regression 24.488 37.1301 0.726594 0.00423336 2.12884
River MLP 121.818 141.004 -2.94294 0.0126944 21.2278
[baseline] Mean predictor 50.2509 71.1144 -0.00292947 0.000490189 0.755343

Charts

TrumpApproval

Summary

Model MAE RMSE R2 Memory in Mb Time in s
Deep River Attention 6.49609 13.1981 -58.5337 0.067049 189.508
Deep River LSTM 10.7062 16.3447 -90.3047 0.0376387 194.99
Deep River Linear 36.6534 36.7298 -460.078 0.0187769 31.5477
Deep River MLP 1.31522 4.85733 -7.06366 0.0385265 45.7201
Deep River RNN 10.936 16.4744 -91.7587 0.0354767 88.6672
Linear regression 1.62028 4.53607 -6.0323 0.0049963 3.96432
River MLP 5.50408 10.9984 -40.3426 0.0139608 37.746
[baseline] Mean predictor 1.56755 2.20286 -0.658483 0.000490189 1.44011

Charts

Datasets

ChickWeights

Chick weights along time.

The stream contains 578 items and 3 features. The goal is to predict the weight of each chick along time, according to the diet the chick is on. The data is ordered by time and then by chick.

Name  ChickWeights                                                                                                          
Task  Regression

Samples 578
Features 3
Sparse False
Path /Users/cedrickulbach/Documents/Projects/deep-river/.venv/lib/python3.10/site-packages/river/datasets/chick-weights.csv

TrumpApproval

Donald Trump approval ratings.

This dataset was obtained by reshaping the data used by FiveThirtyEight for analyzing Donald Trump's approval ratings. It contains 5 features, which are approval ratings collected by 5 polling agencies. The target is the approval rating from FiveThirtyEight's model. The goal of this task is to see if we can reproduce FiveThirtyEight's model.

Name  TrumpApproval                                                                                                             
Task  Regression

Samples 1,001
Features 6
Sparse False
Path /Users/cedrickulbach/Documents/Projects/deep-river/.venv/lib/python3.10/site-packages/river/datasets/trump_approval.csv.gz

Models

Linear regression

Pipeline (
  StandardScaler (
    with_std=True
  ),
  LinearRegression (
    optimizer=SGD (
      lr=Constant (
        learning_rate=0.005
      )
    )
    loss=Squared ()
    l2=0.
    l1=0.
    intercept_init=0.
    intercept_lr=Constant (
      learning_rate=0.01
    )
    clip_gradient=1e+12
    initializer=Zeros ()
  )
)

Deep River Linear

Pipeline (
  StandardScaler (
    with_std=True
  ),
  LinearRegressionInitialized (
    n_features=10
    loss_fn="mse"
    optimizer_fn="sgd"
    lr=0.005
    is_feature_incremental=True
    device="cpu"
    seed=42
    gradient_clip_value=None
  )
)

Deep River MLP

Pipeline (
  StandardScaler (
    with_std=True
  ),
  MultiLayerPerceptron (
    n_features=10
    n_width=5
    n_layers=5
    loss_fn="mse"
    optimizer_fn="sgd"
    lr=0.005
    is_feature_incremental=True
    device="cpu"
    seed=42
    gradient_clip_value=None
  )
)

Deep River LSTM

Pipeline (
  StandardScaler (
    with_std=True
  ),
  LSTMRegressor (
    n_features=10
    hidden_size=64
    num_layers=1
    dropout=0.1
    gradient_clip_value=1.
    loss_fn="mse"
    optimizer_fn="adam"
    lr=0.001
    is_feature_incremental=True
    device="cpu"
    seed=42
  )
)

Deep River RNN

Pipeline (
  StandardScaler (
    with_std=True
  ),
  RNNRegressor (
    n_features=10
    hidden_size=64
    num_layers=1
    nonlinearity="tanh"
    dropout=0.1
    gradient_clip_value=1.
    loss_fn="mse"
    optimizer_fn="adam"
    lr=0.001
    is_feature_incremental=True
    device="cpu"
    seed=42
  )
)

River MLP

Pipeline (
  StandardScaler (
    with_std=True
  ),
  MLPRegressor (
    hidden_dims=(10,)
    activations=(, , )
    loss=Squared ()
    optimizer=SGD (
      lr=Constant (
        learning_rate=0.005
      )
    )
    seed=42
  )
)

[baseline] Mean predictor

StatisticRegressor (
  statistic=Mean ()
)

Environment

Python implementation: CPython
Python version       : 3.12.12
IPython version      : 9.6.0

river       : 0.22.0
numpy       : 1.26.4
scikit-learn: 1.5.2
pandas      : 2.2.3
scipy       : 1.16.2

Compiler    : Clang 21.1.4 
OS          : Linux
Release     : 6.11.0-1018-azure
Machine     : x86_64
Processor   : x86_64
CPU cores   : 4
Architecture: 64bit