Regression¶
ChickWeights¶
Summary¶
| Model | MAE | RMSE | R2 | Memory in Mb | Time in s |
|---|---|---|---|---|---|
| Deep River Attention | 79.3499 | 93.1322 | -0.720105 | 0.0645237 | 134.626 |
| Deep River LSTM | 100.133 | 117.539 | -1.7398 | 0.0351133 | 138.265 |
| Deep River Linear | 119.58 | 138.47 | -2.80249 | 0.0177469 | 20.0831 |
| Deep River MLP | 24.8823 | 38.4367 | 0.707013 | 0.0374966 | 29.0197 |
| Deep River RNN | 100.316 | 117.739 | -1.74914 | 0.0329514 | 54.5518 |
| Linear regression | 24.488 | 37.1301 | 0.726594 | 0.00423336 | 2.12884 |
| River MLP | 121.818 | 141.004 | -2.94294 | 0.0126944 | 21.2278 |
| [baseline] Mean predictor | 50.2509 | 71.1144 | -0.00292947 | 0.000490189 | 0.755343 |
Charts¶
TrumpApproval¶
Summary¶
| Model | MAE | RMSE | R2 | Memory in Mb | Time in s |
|---|---|---|---|---|---|
| Deep River Attention | 6.49609 | 13.1981 | -58.5337 | 0.067049 | 189.508 |
| Deep River LSTM | 10.7062 | 16.3447 | -90.3047 | 0.0376387 | 194.99 |
| Deep River Linear | 36.6534 | 36.7298 | -460.078 | 0.0187769 | 31.5477 |
| Deep River MLP | 1.31522 | 4.85733 | -7.06366 | 0.0385265 | 45.7201 |
| Deep River RNN | 10.936 | 16.4744 | -91.7587 | 0.0354767 | 88.6672 |
| Linear regression | 1.62028 | 4.53607 | -6.0323 | 0.0049963 | 3.96432 |
| River MLP | 5.50408 | 10.9984 | -40.3426 | 0.0139608 | 37.746 |
| [baseline] Mean predictor | 1.56755 | 2.20286 | -0.658483 | 0.000490189 | 1.44011 |
Charts¶
Datasets¶
ChickWeights
Chick weights along time.
The stream contains 578 items and 3 features. The goal is to predict the weight of each chick along time, according to the diet the chick is on. The data is ordered by time and then by chick.
Name ChickWeights
Task Regression
Samples 578
Features 3
Sparse False
Path /Users/cedrickulbach/Documents/Projects/deep-river/.venv/lib/python3.10/site-packages/river/datasets/chick-weights.csv
TrumpApproval
Donald Trump approval ratings.
This dataset was obtained by reshaping the data used by FiveThirtyEight for analyzing Donald Trump's approval ratings. It contains 5 features, which are approval ratings collected by 5 polling agencies. The target is the approval rating from FiveThirtyEight's model. The goal of this task is to see if we can reproduce FiveThirtyEight's model.
Name TrumpApproval
Task Regression
Samples 1,001
Features 6
Sparse False
Path /Users/cedrickulbach/Documents/Projects/deep-river/.venv/lib/python3.10/site-packages/river/datasets/trump_approval.csv.gz
Models¶
Linear regression
Pipeline (
StandardScaler (
with_std=True
),
LinearRegression (
optimizer=SGD (
lr=Constant (
learning_rate=0.005
)
)
loss=Squared ()
l2=0.
l1=0.
intercept_init=0.
intercept_lr=Constant (
learning_rate=0.01
)
clip_gradient=1e+12
initializer=Zeros ()
)
)
Deep River Linear
Pipeline (
StandardScaler (
with_std=True
),
LinearRegressionInitialized (
n_features=10
loss_fn="mse"
optimizer_fn="sgd"
lr=0.005
is_feature_incremental=True
device="cpu"
seed=42
gradient_clip_value=None
)
)
Deep River MLP
Pipeline (
StandardScaler (
with_std=True
),
MultiLayerPerceptron (
n_features=10
n_width=5
n_layers=5
loss_fn="mse"
optimizer_fn="sgd"
lr=0.005
is_feature_incremental=True
device="cpu"
seed=42
gradient_clip_value=None
)
)
Deep River LSTM
Pipeline (
StandardScaler (
with_std=True
),
LSTMRegressor (
n_features=10
hidden_size=64
num_layers=1
dropout=0.1
gradient_clip_value=1.
loss_fn="mse"
optimizer_fn="adam"
lr=0.001
is_feature_incremental=True
device="cpu"
seed=42
)
)
Deep River RNN
Pipeline (
StandardScaler (
with_std=True
),
RNNRegressor (
n_features=10
hidden_size=64
num_layers=1
nonlinearity="tanh"
dropout=0.1
gradient_clip_value=1.
loss_fn="mse"
optimizer_fn="adam"
lr=0.001
is_feature_incremental=True
device="cpu"
seed=42
)
)
River MLP
Pipeline (
StandardScaler (
with_std=True
),
MLPRegressor (
hidden_dims=(10,)
activations=(, , )
loss=Squared ()
optimizer=SGD (
lr=Constant (
learning_rate=0.005
)
)
seed=42
)
)
[baseline] Mean predictor
StatisticRegressor ( statistic=Mean () )
Environment¶
Python implementation: CPython Python version : 3.12.12 IPython version : 9.6.0 river : 0.22.0 numpy : 1.26.4 scikit-learn: 1.5.2 pandas : 2.2.3 scipy : 1.16.2 Compiler : Clang 21.1.4 OS : Linux Release : 6.11.0-1018-azure Machine : x86_64 Processor : x86_64 CPU cores : 4 Architecture: 64bit