Simple Regression Model¶
In [1]:
Copied!
from river import (
metrics,
compose,
preprocessing,
datasets,
stats,
feature_extraction,
)
from deep_river.regression import RegressorInitialized
from torch import nn
from pprint import pprint
from tqdm import tqdm
from river import (
metrics,
compose,
preprocessing,
datasets,
stats,
feature_extraction,
)
from deep_river.regression import RegressorInitialized
from torch import nn
from pprint import pprint
from tqdm import tqdm
In [2]:
Copied!
dataset = datasets.Bikes()
for x, y in dataset:
pprint(x)
print(f"Number of available bikes: {y}")
break
dataset = datasets.Bikes()
for x, y in dataset:
pprint(x)
print(f"Number of available bikes: {y}")
break
{'clouds': 75, 'description': 'light rain', 'humidity': 81, 'moment': datetime.datetime(2016, 4, 1, 0, 0, 7), 'pressure': 1017.0, 'station': 'metro-canal-du-midi', 'temperature': 6.54, 'wind': 9.3} Number of available bikes: 1
In [3]:
Copied!
class MyModule(nn.Module):
def __init__(self, n_features):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(n_features, 5)
self.nonlin = nn.ReLU()
self.dense1 = nn.Linear(5, 1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.nonlin(self.dense1(X))
X = self.softmax(X)
return X
def get_hour(x):
x["hour"] = x["moment"].hour
return x
class MyModule(nn.Module):
def __init__(self, n_features):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(n_features, 5)
self.nonlin = nn.ReLU()
self.dense1 = nn.Linear(5, 1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.nonlin(self.dense1(X))
X = self.softmax(X)
return X
def get_hour(x):
x["hour"] = x["moment"].hour
return x
In [4]:
Copied!
metric = metrics.MAE()
model_pipeline = compose.Select(
"clouds", "humidity", "pressure", "temperature", "wind"
)
model_pipeline += get_hour | feature_extraction.TargetAgg(
by=["station", "hour"], how=stats.Mean()
)
model_pipeline |= preprocessing.StandardScaler()
model_pipeline |= RegressorInitialized(module=MyModule(10), loss_fn="mse", optimizer_fn="sgd")
model_pipeline
metric = metrics.MAE()
model_pipeline = compose.Select(
"clouds", "humidity", "pressure", "temperature", "wind"
)
model_pipeline += get_hour | feature_extraction.TargetAgg(
by=["station", "hour"], how=stats.Mean()
)
model_pipeline |= preprocessing.StandardScaler()
model_pipeline |= RegressorInitialized(module=MyModule(10), loss_fn="mse", optimizer_fn="sgd")
model_pipeline
Out[4]:
['clouds', [...]
Select (
clouds
humidity
pressure
temperature
wind
)
get_hour
def get_hour(x):
x["hour"] = x["moment"].hour
return x
y_mean_by_station_and_hour
TargetAgg (
by=['station', 'hour']
how=Mean ()
target_name="y"
)
StandardScaler
StandardScaler (
with_std=True
)
RegressorInitialized
RegressorInitialized (
module=MyModule(
(dense0): Linear(in_features=10, out_features=5, bias=True)
(nonlin): ReLU()
(dense1): Linear(in_features=5, out_features=1, bias=True)
(softmax): Softmax(dim=-1)
)
loss_fn="mse"
optimizer_fn="sgd"
lr=0.001
output_is_logit=True
is_feature_incremental=False
device="cpu"
seed=42
)
In [5]:
Copied!
for x, y in tqdm(dataset.take(5000)):
y_pred = model_pipeline.predict_one(x)
metric.update(y_true=y, y_pred=y_pred)
model_pipeline.learn_one(x=x, y=y)
print(f"MAE: {metric.get():.2f}")
for x, y in tqdm(dataset.take(5000)):
y_pred = model_pipeline.predict_one(x)
metric.update(y_true=y, y_pred=y_pred)
model_pipeline.learn_one(x=x, y=y)
print(f"MAE: {metric.get():.2f}")
0it [00:00, ?it/s]
83it [00:00, 828.38it/s]
215it [00:00, 1113.79it/s]
356it [00:00, 1247.43it/s]
494it [00:00, 1293.06it/s]
635it [00:00, 1332.09it/s]
781it [00:00, 1370.73it/s]
929it [00:00, 1404.25it/s]
1071it [00:00, 1407.97it/s]
1225it [00:00, 1448.75it/s]
1374it [00:01, 1461.33it/s]
1527it [00:01, 1479.61it/s]
1681it [00:01, 1495.33it/s]
1832it [00:01, 1499.63it/s]
1982it [00:01, 1414.77it/s]
2125it [00:01, 1416.94it/s]
2273it [00:01, 1434.12it/s]
2422it [00:01, 1447.89it/s]
2568it [00:01, 1434.99it/s]
2714it [00:01, 1439.62it/s]
2859it [00:02, 1435.47it/s]
3003it [00:02, 1429.22it/s]
3147it [00:02, 1429.40it/s]
3291it [00:02, 1413.45it/s]
3433it [00:02, 1407.83it/s]
3574it [00:02, 1393.92it/s]
3714it [00:02, 1352.39it/s]
3850it [00:02, 1239.74it/s]
4002it [00:02, 1315.11it/s]
4158it [00:02, 1383.08it/s]
4305it [00:03, 1407.78it/s]
4459it [00:03, 1445.25it/s]
4607it [00:03, 1454.45it/s]
4755it [00:03, 1460.43it/s]
4902it [00:03, 1449.62it/s]
5000it [00:03, 1404.67it/s]
MAE: 6.83