ae
Autoencoder(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: DeepEstimator
, AnomalyDetector
Wrapper for PyTorch autoencoder models that uses the networks reconstruction error for scoring the anomalousness of a given example.
PARAMETER | DESCRIPTION |
---|---|
module
|
Torch Module that builds the autoencoder to be wrapped.
The Module should accept parameter
TYPE:
|
loss_fn
|
Loss function to be used for training the wrapped model. Can be a
loss function provided by
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model. Can be an
optimizer class provided by
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
Examples:
>>> from deep_river.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler
>>> dataset = CreditCard().take(5000)
>>> metric = metrics.RollingROCAUC(window_size=5000)
>>> class MyAutoEncoder(torch.nn.Module):
... def __init__(self, n_features, latent_dim=3):
... super(MyAutoEncoder, self).__init__()
... self.linear1 = nn.Linear(n_features, latent_dim)
... self.nonlin = torch.nn.LeakyReLU()
... self.linear2 = nn.Linear(latent_dim, n_features)
... self.sigmoid = nn.Sigmoid()
...
... def forward(self, X, **kwargs):
... X = self.linear1(X)
... X = self.nonlin(X)
... X = self.linear2(X)
... return self.sigmoid(X)
>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)
>>> for x, y in dataset:
... score = model.score_one(x)
... model.learn_one(x=x)
... metric.update(y, score)
...
>>> print(f"Rolling ROCAUC: {metric.get():.4f}")
Rolling ROCAUC: 0.8901
learn_many(X)
¶
Performs one step of training with a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
X
|
Input batch of examples.
TYPE:
|
learn_one(x, y=None, **kwargs)
¶
Performs one step of training with a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
**kwargs
|
DEFAULT:
|
score_many(X)
¶
Returns an anomaly score for the provided batch of examples in the form of the autoencoder's reconstruction error.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input batch of examples.
|
RETURNS | DESCRIPTION |
---|---|
float
|
Anomaly scores for the given batch of examples. Larger values indicate more anomalous examples. |
score_one(x)
¶
Returns an anomaly score for the provided example in the form of the autoencoder's reconstruction error.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Anomaly score for the given example. Larger values indicate more anomalous examples. |
AutoencoderInitialized(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: DeepEstimatorInitialized
, AnomalyDetector
Represents an initialized autoencoder for anomaly detection and feature learning.
This class is built upon the DeepEstimatorInitialized and AnomalyDetector base classes. It provides methods for performing unsupervised learning through an autoencoder mechanism. The primary objective of the class is to train the autoencoder on input data and compute anomaly scores based on the reconstruction error. It supports learning on individual examples or entire batches of data.
ATTRIBUTE | DESCRIPTION |
---|---|
is_feature_incremental |
Indicates whether the model is designed to increment features dynamically.
TYPE:
|
module |
The PyTorch model representing the autoencoder architecture.
TYPE:
|
loss_fn |
Specifies the loss function to compute the reconstruction error.
TYPE:
|
optimizer_fn |
Specifies the optimizer to be used for training the autoencoder.
TYPE:
|
lr |
The learning rate for optimization.
TYPE:
|
device |
The device on which the model is loaded and trained (e.g., "cpu", "cuda").
TYPE:
|
seed |
Random seed for ensuring reproducibility.
TYPE:
|
learn_many(X)
¶
Performs one step of training with a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
X
|
Input batch of examples.
TYPE:
|
learn_one(x, y=None, **kwargs)
¶
Performs one step of training with a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
**kwargs
|
DEFAULT:
|
score_many(X)
¶
Returns an anomaly score for the provided batch of examples in the form of the autoencoder's reconstruction error.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input batch of examples.
|
RETURNS | DESCRIPTION |
---|---|
float
|
Anomaly scores for the given batch of examples. Larger values indicate more anomalous examples. |
score_one(x)
¶
Returns an anomaly score for the provided example in the form of the autoencoder's reconstruction error.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Anomaly score for the given example. Larger values indicate more anomalous examples. |