ae
Autoencoder(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: DeepEstimator
, AnomalyDetector
Wrapper for PyTorch autoencoder models that uses the networks reconstruction error for scoring the anomalousness of a given example.
PARAMETER | DESCRIPTION |
---|---|
module
|
Torch Module that builds the autoencoder to be wrapped.
The Module should accept parameter
TYPE:
|
loss_fn
|
Loss function to be used for training the wrapped model. Can be a
loss function provided by
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model. Can be an
optimizer class provided by
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
Examples:
>>> from deep_river.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler
>>> dataset = CreditCard().take(5000)
>>> metric = metrics.RollingROCAUC(window_size=5000)
>>> class MyAutoEncoder(torch.nn.Module):
... def __init__(self, n_features, latent_dim=3):
... super(MyAutoEncoder, self).__init__()
... self.linear1 = nn.Linear(n_features, latent_dim)
... self.nonlin = torch.nn.LeakyReLU()
... self.linear2 = nn.Linear(latent_dim, n_features)
... self.sigmoid = nn.Sigmoid()
...
... def forward(self, X, **kwargs):
... X = self.linear1(X)
... X = self.nonlin(X)
... X = self.linear2(X)
... return self.sigmoid(X)
>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)
>>> for x, y in dataset:
... score = model.score_one(x)
... model.learn_one(x=x)
... metric.update(y, score)
...
>>> print(f"Rolling ROCAUC: {metric.get():.4f}")
Rolling ROCAUC: 0.8901
learn_many(X)
¶
Performs one step of training with a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
X
|
Input batch of examples.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Autoencoder
|
The model itself. |
learn_one(x, y=None, **kwargs)
¶
Performs one step of training with a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
**kwargs
|
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
Autoencoder
|
The model itself. |
score_many(X)
¶
Returns an anomaly score for the provided batch of examples in the form of the autoencoder's reconstruction error.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input batch of examples.
|
RETURNS | DESCRIPTION |
---|---|
float
|
Anomaly scores for the given batch of examples. Larger values indicate more anomalous examples. |
score_one(x)
¶
Returns an anomaly score for the provided example in the form of the autoencoder's reconstruction error.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Anomaly score for the given example. Larger values indicate more anomalous examples. |