ae
¶
Classes:
Name | Description |
---|---|
Autoencoder |
Represents an initialized autoencoder for anomaly detection and feature learning. |
Autoencoder
¶
Autoencoder(
module: Module,
loss_fn: Union[str, Callable] = "mse",
optimizer_fn: Union[str, Callable] = "sgd",
lr: float = 0.001,
is_feature_incremental: bool = False,
device: str = "cpu",
seed: int = 42,
**kwargs
)
Bases: DeepEstimator
, AnomalyDetector
Represents an initialized autoencoder for anomaly detection and feature learning.
This class is built upon the DeepEstimatorInitialized and AnomalyDetector base classes. It provides methods for performing unsupervised learning through an autoencoder mechanism. The primary objective of the class is to train the autoencoder on input data and compute anomaly scores based on the reconstruction error. It supports learning on individual examples or entire batches of data.
Attributes:
Name | Type | Description |
---|---|---|
is_feature_incremental |
bool
|
Indicates whether the model is designed to increment features dynamically. |
module |
Module
|
The PyTorch model representing the autoencoder architecture. |
loss_fn |
Union[str, Callable]
|
Specifies the loss function to compute the reconstruction error. |
optimizer_fn |
Union[str, Callable]
|
Specifies the optimizer to be used for training the autoencoder. |
lr |
float
|
The learning rate for optimization. |
device |
str
|
The device on which the model is loaded and trained (e.g., "cpu", "cuda"). |
seed |
int
|
Random seed for ensuring reproducibility. |
Methods:
Name | Description |
---|---|
clone |
Return a fresh estimator instance with (optionally) copied state. |
draw |
Render a (partial) computational graph of the wrapped model. |
learn_many |
Performs one step of training with a batch of examples. |
learn_one |
Performs one step of training with a single example. |
load |
Load a previously saved estimator. |
save |
Persist the estimator (architecture, weights, optimiser & runtime state). |
score_many |
Returns an anomaly score for the provided batch of examples in |
score_one |
Returns an anomaly score for the provided example in the form of |
Source code in deep_river/anomaly/ae.py
clone
¶
Return a fresh estimator instance with (optionally) copied state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_params
|
dict | None
|
Parameter overrides for the cloned instance. |
None
|
include_attributes
|
bool
|
If True, runtime state (observed features, buffers) is also copied. |
False
|
copy_weights
|
bool
|
If True, model weights are copied (otherwise the module is re‑initialised). |
False
|
Source code in deep_river/base.py
draw
¶
Render a (partial) computational graph of the wrapped model.
Imports graphviz
and torchviz
lazily. Raises an informative
ImportError if the optional dependencies are not installed.
Source code in deep_river/base.py
learn_many
¶
Performs one step of training with a batch of examples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
Input batch of examples. |
required |
Source code in deep_river/anomaly/ae.py
learn_one
¶
Performs one step of training with a single example.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
dict
|
Input example. |
required |
**kwargs
|
|
{}
|
Source code in deep_river/anomaly/ae.py
load
classmethod
¶
Load a previously saved estimator.
The method reconstructs the estimator class, its wrapped module, optimiser state and runtime information (feature names, buffers, etc.).
Source code in deep_river/base.py
save
¶
Persist the estimator (architecture, weights, optimiser & runtime state).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath
|
str | Path
|
Destination file. Parent directories are created automatically. |
required |
Source code in deep_river/base.py
score_many
¶
Returns an anomaly score for the provided batch of examples in the form of the autoencoder's reconstruction error.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Input batch of examples. |
required |
Returns:
Type | Description |
---|---|
float
|
Anomaly scores for the given batch of examples. Larger values indicate more anomalous examples. |
Source code in deep_river/anomaly/ae.py
score_one
¶
Returns an anomaly score for the provided example in the form of the autoencoder's reconstruction error.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
dict
|
Input example. |
required |
Returns:
Type | Description |
---|---|
float
|
Anomaly score for the given example. Larger values indicate more anomalous examples. |