Skip to content

probability_weighted_ae

ProbabilityWeightedAutoencoder(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, skip_threshold=0.9, window_size=250, **kwargs)

Bases: Autoencoder

Wrapper for PyTorch autoencoder models for anomaly detection that reduces the employed learning rate based on an outlier probability estimate of the input example as well as a threshold probability skip_threshold. If the outlier probability is above the threshold, the learning rate is reduced to less than 0. Given the probability estimate pout, the adjusted learning rate lradj is Math input error.

PARAMETER DESCRIPTION
module

Torch Module that builds the autoencoder to be wrapped. The Module should accept parameter n_features so that the returned model's input shape can be determined based on the number of features in the initial training example.

TYPE: Type[Module]

loss_fn

Loss function to be used for training the wrapped model. Can be a loss function provided by torch.nn.functional or one of the following: 'mse', 'l1', 'cross_entropy', 'binary_crossentropy', 'smooth_l1', 'kl_div'.

TYPE: Union[str, Callable] DEFAULT: 'mse'

optimizer_fn

Optimizer to be used for training the wrapped model. Can be an optimizer class provided by torch.optim or one of the following: "adam", "adam_w", "sgd", "rmsprop", "lbfgs".

TYPE: Union[str, Callable] DEFAULT: 'sgd'

lr

Base learning rate of the optimizer.

TYPE: float DEFAULT: 0.001

skip_threshold

Threshold probability to use as a reference for the reduction of the base learning rate.

TYPE: float DEFAULT: 0.9

device

Device to run the wrapped model on. Can be "cpu" or "cuda".

TYPE: str DEFAULT: 'cpu'

seed

Random seed to be used for training the wrapped model.

TYPE: int DEFAULT: 42

**kwargs

Parameters to be passed to the module function aside from n_features.

Examples

DEFAULT: {}

Rolling

learn_one(x, y=None, **kwargs)

Performs one step of training with a single example, scaling the employed learning rate based on the outlier probability estimate of the input example.

PARAMETER DESCRIPTION
**kwargs

DEFAULT: {}

x

Input example.

TYPE: dict

RETURNS DESCRIPTION
ProbabilityWeightedAutoencoder

The autoencoder itself.

ProbabilityWeightedAutoencoderInitialized(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, skip_threshold=0.9, window_size=250, **kwargs)

Bases: AutoencoderInitialized

learn_one(x, y=None, **kwargs)

Performs one step of training with a single example, scaling the employed learning rate based on the outlier probability estimate of the input example.

PARAMETER DESCRIPTION
**kwargs

DEFAULT: {}

x

Input example.

TYPE: dict

RETURNS DESCRIPTION
ProbabilityWeightedAutoencoder

The autoencoder itself.