rolling_ae
RollingAutoencoder(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, window_size=10, append_predict=False, **kwargs)
¶
Bases: RollingDeepEstimator
, AnomalyDetector
Wrapper for PyTorch autoencoder models that uses the networks reconstruction error for scoring the anomalousness of a given example. The class also features a rolling window to allow the model to make predictions based on the reconstructability of multiple previous examples.
PARAMETER | DESCRIPTION |
---|---|
module
|
Torch module that builds the autoencoder to be wrapped.
The module should accept inputs with shape
TYPE:
|
loss_fn
|
Loss function to be used for training the wrapped model. Can be a
loss function provided by
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model. Can be an
optimizer class provided by
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
window_size
|
Size of the rolling window used for storing previous examples.
TYPE:
|
append_predict
|
Whether to append inputs passed for prediction to the rolling window.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
learn_many(X, y=None)
¶
Performs one step of training with a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
X
|
Input batch of examples.
TYPE:
|
y
|
Should be None
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
RollingAutoencoder
|
The estimator itself. |
learn_one(x, y=None, **kwargs)
¶
Performs one step of training with a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RollingAutoencoder
|
The estimator itself. |