Skip to content

base

DeepEstimator(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, **kwargs)

Bases: Estimator

Abstract base class that implements basic functionality of River-compatible PyTorch wrappers.

PARAMETER DESCRIPTION
module

Torch Module that builds the autoencoder to be wrapped. The Module should accept parameter n_features so that the returned model's input shape can be determined based on the number of features in the initial training example.

TYPE: Type[Module]

loss_fn

Loss function to be used for training the wrapped model. Can be a loss function provided by torch.nn.functional or one of the following: 'mse', 'l1', 'cross_entropy', 'binary_crossentropy', 'smooth_l1', 'kl_div'.

TYPE: Union[str, Callable] DEFAULT: 'mse'

optimizer_fn

Optimizer to be used for training the wrapped model. Can be an optimizer class provided by torch.optim or one of the following: "adam", "adam_w", "sgd", "rmsprop", "lbfgs".

TYPE: Union[str, Callable] DEFAULT: 'sgd'

lr

Learning rate of the optimizer.

TYPE: float DEFAULT: 0.001

device

Device to run the wrapped model on. Can be "cpu" or "cuda".

TYPE: str DEFAULT: 'cpu'

seed

Random seed to be used for training the wrapped model.

TYPE: int DEFAULT: 42

**kwargs

Parameters to be passed to the Module or the optimizer.

DEFAULT: {}

clone(new_params=None, include_attributes=False)

Clones the estimator.

PARAMETER DESCRIPTION
new_params

New parameters to be passed to the cloned estimator.

TYPE: dict[Any, Any] | None DEFAULT: None

include_attributes

If True, the attributes of the estimator will be copied to the cloned estimator. This is useful when the estimator is a transformer and the attributes are the learned parameters.

DEFAULT: False

RETURNS DESCRIPTION
DeepEstimator

The cloned estimator.

draw()

Draws the wrapped model.

initialize_module(x, **kwargs)

PARAMETER DESCRIPTION
module

The instance or class or callable to be initialized, e.g. self.module.

kwargs

The keyword arguments to initialize the instance or class. Can be an empty dict.

TYPE: dict DEFAULT: {}

RETURNS DESCRIPTION
instance

The initialized component.

DeepEstimatorInitialized(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, is_feature_incremental=False, **kwargs)

Bases: Estimator

Enhances PyTorch modules with dynamic adaptability to evolving features.

The class extends the functionality of a base estimator by dynamically updating and expanding neural network layers to handle incremental changes in feature space. It supports feature set discovery, input size adjustments, weight expansion, and varied learning procedures. This makes it suitable for evolving input spaces while maintaining neural network integrity.

ATTRIBUTE DESCRIPTION
module

The PyTorch model that serves as the backbone of this class's functionality.

TYPE: Module

lr

Learning rate for model optimization.

TYPE: float

loss_fn

The loss function used for computing training error.

TYPE: Union[str, Callable]

loss_func

The compiled loss function produced via get_loss_fn.

TYPE: Callable

optimizer

The compiled optimizer used for updating model weights.

TYPE: Optimizer

optimizer_fn

The optimizer function or class used for training.

TYPE: Union[str, Callable]

device

The computational device (e.g., "cpu", "cuda") used for training.

TYPE: str

seed

The random seed for ensuring reproducible operations.

TYPE: int

is_feature_incremental

Indicates whether the model should automatically expand based on new features.

TYPE: bool

kwargs

Additional arguments passed to the model and utilities.

TYPE: dict

input_layer

The input layer of the PyTorch model, determined dynamically.

TYPE: Module

output_layer

The output layer of the PyTorch model, determined dynamically.

TYPE: Module

observed_features

Tracks all observed input features dynamically, allowing for feature incrementation.

TYPE: SortedSet

RollingDeepEstimator(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, window_size=10, append_predict=False, **kwargs)

Bases: DeepEstimator

Abstract base class that implements basic functionality of River-compatible PyTorch wrappers including a rolling window to allow the model to make predictions based on multiple previous examples.

PARAMETER DESCRIPTION
module

Torch Module that builds the autoencoder to be wrapped. The Module should accept parameter n_features so that the returned model's input shape can be determined based on the number of features in the initial training example.

TYPE: Type[Module]

loss_fn

Loss function to be used for training the wrapped model. Can be a loss function provided by torch.nn.functional or one of the following: 'mse', 'l1', 'cross_entropy', 'binary_crossentropy', 'smooth_l1', 'kl_div'.

TYPE: Union[str, Callable] DEFAULT: 'mse'

optimizer_fn

Optimizer to be used for training the wrapped model. Can be an optimizer class provided by torch.optim or one of the following: "adam", "adam_w", "sgd", "rmsprop", "lbfgs".

TYPE: Union[str, Callable] DEFAULT: 'sgd'

lr

Learning rate of the optimizer.

TYPE: float DEFAULT: 0.001

device

Device to run the wrapped model on. Can be "cpu" or "cuda".

TYPE: str DEFAULT: 'cpu'

seed

Random seed to be used for training the wrapped model.

TYPE: int DEFAULT: 42

window_size

Size of the rolling window used for storing previous examples.

TYPE: int DEFAULT: 10

append_predict

Whether to append inputs passed for prediction to the rolling window.

TYPE: bool DEFAULT: False

**kwargs

Parameters to be passed to the Module or the optimizer.

DEFAULT: {}

RollingDeepEstimatorInitialized(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, window_size=10, append_predict=False, **kwargs)

Bases: DeepEstimatorInitialized

RollingDeepEstimatorInitialized class for rolling window-based deep learning model estimation.

This class extends the functionality of the DeepEstimatorInitialized class to support training and prediction using a rolling window. It maintains a fixed-size deque to store a rolling window of input data. It can optionally append predictions to the input window to facilitate iterative prediction workflows. This class is designed for advanced users who need rolling window functionality in their deep learning estimation pipelines.

ATTRIBUTE DESCRIPTION
window_size

The size of the rolling window used for training and prediction.

TYPE: int

append_predict

Flag to indicate whether to append predictions into the rolling window.

TYPE: bool

_x_window

A fixed-size deque object, which stores the most recent input window data.

TYPE: Deque

_batch_i

The internal counter for batch index tracking during training or prediction.

TYPE: int