regressor
Regressor(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: DeepEstimator
, MiniBatchRegressor
Wrapper for PyTorch regression models that enables compatibility with River.
PARAMETER | DESCRIPTION |
---|---|
module
|
Torch Module that builds the autoencoder to be wrapped.
The Module should accept parameter
TYPE:
|
loss_fn
|
Loss function to be used for training the wrapped model.
Can be a loss function provided by
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model.
Can be an optimizer class provided by
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
Examples:
learn_many(X, y)
¶
Performs one step of training with a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input examples.
|
y
|
Target values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Regressor
|
The regressor itself. |
learn_one(x, y, **kwargs)
¶
Performs one step of training with a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
y
|
Target value.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Regressor
|
The regressor itself. |
predict_many(X)
¶
Predicts the target value for a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input examples.
|
RETURNS | DESCRIPTION |
---|---|
List
|
Predicted target values. |
predict_one(x)
¶
Predicts the target value for a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RegTarget
|
Predicted target value. |
RegressorInitialized(module, loss_fn, optimizer_fn, lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: DeepEstimatorInitialized
, MiniBatchRegressor
Wrapper for PyTorch classification models that supports feature and class incremental learning.
PARAMETER | DESCRIPTION |
---|---|
module
|
A PyTorch model. Can be pre-initialized or uninitialized.
TYPE:
|
loss_fn
|
Loss function for training. Can be a string ('mse', 'cross_entropy', etc.) or a PyTorch function.
TYPE:
|
optimizer_fn
|
Optimizer for training (e.g., "adam", "sgd", or a PyTorch optimizer class).
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
output_is_logit
|
If True, applies softmax/sigmoid during inference.
TYPE:
|
is_class_incremental
|
If True, adds neurons when new classes appear.
TYPE:
|
is_feature_incremental
|
If True, adds neurons when new features appear.
TYPE:
|
device
|
Whether to use "cpu" or "cuda".
TYPE:
|
seed
|
Random seed for reproducibility.
TYPE:
|
**kwargs
|
Additional parameters for model initialization.
DEFAULT:
|