regressor
Regressor(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: DeepEstimator
, MiniBatchRegressor
Wrapper for PyTorch regression models that enables compatibility with River.
PARAMETER | DESCRIPTION |
---|---|
module
|
Torch Module that builds the autoencoder to be wrapped.
The Module should accept parameter
TYPE:
|
loss_fn
|
Loss function to be used for training the wrapped model.
Can be a loss function provided by
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model.
Can be an optimizer class provided by
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
Examples:
learn_many(X, y)
¶
Performs one step of training with a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input examples.
|
y
|
Target values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Regressor
|
The regressor itself. |
learn_one(x, y, **kwargs)
¶
Performs one step of training with a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
y
|
Target value.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Regressor
|
The regressor itself. |
predict_many(X)
¶
Predicts the target value for a batch of examples.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input examples.
|
RETURNS | DESCRIPTION |
---|---|
List
|
Predicted target values. |
predict_one(x)
¶
Predicts the target value for a single example.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RegTarget
|
Predicted target value. |