rolling_regressor
RollingRegressor(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, window_size=10, append_predict=False, device='cpu', seed=42, **kwargs)
¶
Bases: RollingDeepEstimator
, Regressor
Wrapper that feeds a sliding window of the most recent examples to the wrapped PyTorch regression model.
PARAMETER | DESCRIPTION |
---|---|
module
|
Torch Module that builds the autoencoder to be wrapped.
The Module should accept parameter
TYPE:
|
loss_fn
|
Loss function to be used for training the wrapped model. Can be a
loss function provided by
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model. Can be an
optimizer class provided by
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
is_feature_incremental
|
Whether the model should adapt to the appearance of previously features by adding units to the input layer of the network.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
window_size
|
Number of recent examples to be fed to the wrapped model at each step.
TYPE:
|
append_predict
|
Whether to append inputs passed for prediction to the rolling window.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
learn_one(x, y, **kwargs)
¶
Performs one step of training with the sliding window of the most recent examples.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
y
|
Target value.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RollingRegressor
|
The regressor itself. |
predict_one(x)
¶
Predicts the target value for the current sliding window of most recent examples.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RegTarget
|
Predicted target value. |
RollingRegressorInitialized(module, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=False, device='cpu', seed=42, window_size=10, append_predict=False, **kwargs)
¶
Bases: RollingDeepEstimatorInitialized
, RegressorInitialized
RollingRegressorInitialized class built for regression tasks with a window-based learning mechanism. Handles incremental learning by maintaining a sliding window of training data for both individual examples and batches of data. Enables feature incremental updates and compatibility with PyTorch modules. Ideal for time-series or sequential data tasks where the training set changes dynamically.
ATTRIBUTE | DESCRIPTION |
---|---|
module |
A PyTorch neural network model that defines the architecture of the regressor.
TYPE:
|
loss_fn |
Loss function used for optimization. Either a string (e.g., "mse") or a callable.
TYPE:
|
optimizer_fn |
Optimizer function or string used for training the neural network model.
TYPE:
|
lr |
Learning rate for the optimizer.
TYPE:
|
is_feature_incremental |
Whether the model incrementally updates its features during training.
TYPE:
|
device |
Target device for model training and inference (e.g., "cpu", "cuda").
TYPE:
|
seed |
Random seed for reproducibility.
TYPE:
|
window_size |
Size of the sliding window used for storing the most recent training examples.
TYPE:
|
append_predict |
Whether predictions should contribute to the sliding window data.
TYPE:
|
learn_many(X, y)
¶
Performs one step of training with the most recent training examples stored in the sliding window.
PARAMETER | DESCRIPTION |
---|---|
X
|
Input examples.
TYPE:
|
y
|
Target values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
The regressor itself. |
learn_one(x, y, **kwargs)
¶
Performs one step of training with the most recent training examples stored in the sliding window.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
y
|
Target value.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
The regressor itself. |
predict_many(X)
¶
Predict the probability of each label given the most recent examples
PARAMETER | DESCRIPTION |
---|---|
X
|
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
DataFrame of probabilities for each label. |
predict_one(x)
¶
Predict the probability of each label given the most recent examples stored in the sliding window.
PARAMETER | DESCRIPTION |
---|---|
x
|
Input example.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[ClfTarget, float]
|
Dictionary of probabilities for each label. |