Skip to content

zoo

LSTMRegressorInitialized(n_features=10, loss_fn='binary_cross_entropy_with_logits', optimizer_fn='sgd', lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)

LinearRegressionInitialized(n_features=10, loss_fn='binary_cross_entropy_with_logits', optimizer_fn='sgd', lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)

Bases: RegressorInitialized

Linear Regression model for regression.

PARAMETER DESCRIPTION
loss_fn

Loss function to be used for training the wrapped model.

TYPE: str or Callable DEFAULT: 'binary_cross_entropy_with_logits'

optimizer_fn

Optimizer to be used for training the wrapped model.

TYPE: str or Callable DEFAULT: 'sgd'

lr

Learning rate of the optimizer.

TYPE: float DEFAULT: 0.001

output_is_logit

Whether the module produces logits as output. If true, either softmax or sigmoid is applied to the outputs when predicting.

TYPE: bool DEFAULT: True

is_class_incremental

Whether the classifier should adapt to the appearance of previously unobserved classes by adding an unit to the output layer of the network.

TYPE: bool

is_feature_incremental

Whether the model should adapt to the appearance of previously features by adding units to the input layer of the network.

TYPE: bool DEFAULT: False

device

Device to run the wrapped model on. Can be "cpu" or "cuda".

TYPE: str DEFAULT: 'cpu'

seed

Random seed to be used for training the wrapped model.

TYPE: int DEFAULT: 42

**kwargs

Parameters to be passed to the build_fn function aside from n_features.

DEFAULT: {}

MultiLayerPerceptronInitialized(n_features=10, n_width=5, n_layers=5, loss_fn='binary_cross_entropy_with_logits', optimizer_fn='sgd', lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)

Bases: RegressorInitialized

Linear Regression model for regression.

PARAMETER DESCRIPTION
loss_fn

Loss function to be used for training the wrapped model.

TYPE: str or Callable DEFAULT: 'binary_cross_entropy_with_logits'

optimizer_fn

Optimizer to be used for training the wrapped model.

TYPE: str or Callable DEFAULT: 'sgd'

lr

Learning rate of the optimizer.

TYPE: float DEFAULT: 0.001

output_is_logit

Whether the module produces logits as output. If true, either softmax or sigmoid is applied to the outputs when predicting.

TYPE: bool DEFAULT: True

is_class_incremental

Whether the classifier should adapt to the appearance of previously unobserved classes by adding an unit to the output layer of the network.

TYPE: bool

is_feature_incremental

Whether the model should adapt to the appearance of previously features by adding units to the input layer of the network.

TYPE: bool DEFAULT: False

device

Device to run the wrapped model on. Can be "cpu" or "cuda".

TYPE: str DEFAULT: 'cpu'

seed

Random seed to be used for training the wrapped model.

TYPE: int DEFAULT: 42

**kwargs

Parameters to be passed to the build_fn function aside from n_features.

DEFAULT: {}