zoo
LSTMRegressorInitialized(n_features=10, loss_fn='binary_cross_entropy_with_logits', optimizer_fn='sgd', lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: RollingRegressorInitialized
LinearRegressionInitialized(n_features=10, loss_fn='binary_cross_entropy_with_logits', optimizer_fn='sgd', lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: RegressorInitialized
Linear Regression model for regression.
PARAMETER | DESCRIPTION |
---|---|
loss_fn
|
Loss function to be used for training the wrapped model.
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model.
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
output_is_logit
|
Whether the module produces logits as output. If true, either softmax or sigmoid is applied to the outputs when predicting.
TYPE:
|
is_class_incremental
|
Whether the classifier should adapt to the appearance of previously unobserved classes by adding an unit to the output layer of the network.
TYPE:
|
is_feature_incremental
|
Whether the model should adapt to the appearance of previously features by adding units to the input layer of the network.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|
MultiLayerPerceptronInitialized(n_features=10, n_width=5, n_layers=5, loss_fn='binary_cross_entropy_with_logits', optimizer_fn='sgd', lr=0.001, output_is_logit=True, is_feature_incremental=False, device='cpu', seed=42, **kwargs)
¶
Bases: RegressorInitialized
Linear Regression model for regression.
PARAMETER | DESCRIPTION |
---|---|
loss_fn
|
Loss function to be used for training the wrapped model.
TYPE:
|
optimizer_fn
|
Optimizer to be used for training the wrapped model.
TYPE:
|
lr
|
Learning rate of the optimizer.
TYPE:
|
output_is_logit
|
Whether the module produces logits as output. If true, either softmax or sigmoid is applied to the outputs when predicting.
TYPE:
|
is_class_incremental
|
Whether the classifier should adapt to the appearance of previously unobserved classes by adding an unit to the output layer of the network.
TYPE:
|
is_feature_incremental
|
Whether the model should adapt to the appearance of previously features by adding units to the input layer of the network.
TYPE:
|
device
|
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed
|
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs
|
Parameters to be passed to the
DEFAULT:
|