zoo
LinearRegression(loss_fn='mse', optimizer_fn='sgd', lr=0.001, device='cpu', seed=42, is_feature_incremental=False, **kwargs)
¶
MultiLayerPerceptron(n_width=5, n_layers=5, loss_fn='mse', optimizer_fn='sgd', lr=0.001, is_feature_incremental=True, device='cpu', seed=42, **kwargs)
¶
Bases: Regressor
This class implements a logistic regression model in PyTorch.
PARAMETER | DESCRIPTION |
---|---|
n_width |
Number of units in each hidden layer.
TYPE:
|
n_layers |
Number of hidden layers.
TYPE:
|
loss_fn |
TYPE:
|
optimizer_fn |
Optimizer to be used for training the wrapped model.
Can be an optimizer class provided by
TYPE:
|
lr |
Learning rate of the optimizer.
TYPE:
|
output_is_logit |
Whether the module produces logits as output. If true, either softmax or sigmoid is applied to the outputs when predicting.
|
is_feature_incremental |
Whether the model should adapt to the appearance of previously features by adding units to the input layer of the network.
TYPE:
|
device |
Device to run the wrapped model on. Can be "cpu" or "cuda".
TYPE:
|
seed |
Random seed to be used for training the wrapped model.
TYPE:
|
**kwargs |
Parameters to be passed to the
DEFAULT:
|